Feeds:
Posts
Comments

Archive for the ‘Nature Manchester’ Category

Weaving through mazes of ancient-looking cabinets, the ever-present scent of mothballs permeating the air, one can only begin to comprehend the breadth and magnitude of the Museum of Manchester’s entomological collection of 2.5 million specimens. Much of it was donated or bequeathed from individual collections, and as such, allows a fascinating representation of the history of entomology around the world. By studying these collections, we can not only gain insight into the insects themselves, we can reveal peculiarities about the contexts in which they were collected. In today’s blog post, I would like to introduce you to a drawer of particular interest, originating from the collection of Mr. Joseph Sidebotham.

Image_01_Sidebotham

Josef Sidebotham, the frontispiece from Grindon’s (1886) memoir

Joseph Sidebotham (1824 – 1885) was a Mancunian businessman with a broad range of interests including, but certainly not limited to, natural history (Cook, 2015). A member of numerous scientific societies and highly esteemed in his community, his collection of Lepidoptera was donated to the Museum by his heirs in 1919, and included 1,900 species of mostly British origin. At first glance, they appear relatively consistent with other individual collections of the time. The butterflies are set with their wings depressed, nearly touching the bottom of the drawers, a style of mounting which was common until the 1860s. Despite being very aesthetically pleasing, only a few are labelled with dates or locations, as many personal collectors did not regard this information as vital.

Image_05

The style of butterfly mounting in the Sidebotham collection; the Manchester Museum.

Upon closer inspection, elements of mystery begin to reveal themselves. The left-most column displays Orange-tip Butterflies (Anthocharis cardamines), which are a sexually dimorphic species, meaning that males and females look different. Male Orange-tip butterflies have (you guessed it) orange-tipped wings, while the females have more inconspicuous colouration. So, what are those two specimens in the middle, each with a single orange-tipped wing?

Image_04

Drawer of butterflies from the Sidebotham collection; the Manchester Museum.

Image_02

Two gynangromorph specimens of the Orange Tip (Anthocharis cardamines) from the collection of the Manchester Museum.

Those individuals are known as gynandromorphs, meaning they show both male and female characteristics (gyn – female, andro – male, morph – form). Resulting from errors during early development, they are uncommon in nature, but gynandromorphy has been documented in a wide range of insects (see Narita et al., 2010 for further details), spiders (e.g., Kaston, 1961) crustaceans (e.g., brine shrimps; see Campos-Ramos et al., 2006) (and even birds (Agate et al.,2003). It is most easily distinguished in sexually dimorphic species; however the pattern of male and female tissue can differ between individuals. Bilateral gynandromorphs, such as the Orange-tips above, have a left-right split of male and female characteristics. Individuals of the same species with a more random distribution of tissues, known as mosaic gynandromorphism, can also be found.

The matching pair of Orange-tips were likely a point of pride within Sidebotham’s collection, as their opposing colouration provides a striking example of gynandromorphism, and such specimens were often favoured by insect collectors due to their rarity and unusual appearance. Besides, these specimens seem to represent one of the oldest records of gynandromorphism in Lepidoptera (Narita et al., 2010). Now, they provide the Museum with not only an educational tool, but an intriguing little piece of history.

Image_03

Jamie Burnett, the author of this post, with a drawer of butterflies from J. Sidebotham’s collection.

If you’d like to know more about Joseph Sidebotham, see online here and here.

If you’d like to know more about gynandromorphism in general, see online here and here.

If you’d like to know more about gynandromorphism in arthropods see online here.

 

Read Full Post »

Image_01

Manchester’s urban green spaces and parks provide homes to a vast array of wildlife, and The Friends of Fletcher Moss Park and Gardens are inviting everyone to lend a hand at their BioBlitz event on Saturday 18 May – an exciting race against the clock to discover, identify and record as many species of bird, insect, mammal and plant life as possible.

The BioBlitz will have a particular focus on the insects that fly, buzz, wriggle and crawl in the habitats around the park and within the nearby Mersey Valley, and there will be experts on hand from a number of organisations including Manchester Museum and the RSPB to help identify what is found. The data recorded will be shared with Greater Manchester Local Records Centre and the National Biodiversity Network and will be used to measure the impact of future conservation work, undertaken in partnership with Manchester City Council, at the site. 

At the start of the event there will be a rare opportunity to observe nocturnal insect species up close, and throughout the day there will be guided walks suitable for all ages that will showcase the range of species that can be found at Fletcher Moss Park. More information about the times of the walks can be found by visiting rspb.org.uk/events and searching for events in Greater Manchester.

Families can drop in to take part in fun activities, including pond dipping, minibeast hunting and worm charming – these activities count towards the RSPB’s Wild Challenge, a digital rewards scheme to encourage families to get closer to nature all year round by completing fun activities that will help wildlife in their own back garden and the great outdoors. For more information about the Wild Challenge, visit rspb.org.uk/wildchallenge

Venue: Fletcher Moss Park and Gardens. Use the Millgate Lane entrance, M20 2SW. Activities will be signposted upon entering the park.

Contact: For more information, email Mersey.Valley@rspb.org.uk

 For further information and to arrange an interview, please contact:

Jenny Hackland, Mersey Valley Project Officer on 07540 121 309 or email jenny.hackland@rspb.org.uk

Or

Annabel Rushton, RSPB Regional Communications Manager, on 01524 581026 or 07793 902 590 or email annabel.rushton@rspb.org.uk

Follow us on Twitter: @RSPBManchester

Like us on Facebook: RSPB North West England

 Editor’s notes

1.     Manchester City Council and the RSPB are developing an exciting new vision to connect people with nature in the Mersey Valley. The two organisations are working closely with local people and groups, such as the Friends of Fletcher Moss and Parsonage Gardens, Didsbury, to explore ways of encouraging people to do something positive for wildlife, reconnect with nature and help look after the Mersey Valley by getting actively involved.

2.     The RSPB is the UK’s largest nature conservation charity, inspiring everyone to give nature a home. Together with our partners, we protect threatened birds and wildlife so our towns, coast and countryside will teem with life once again. We play a leading role in BirdLife International, a worldwide partnership of nature conservation organisations.

 3.     The RSPB’s Wild Challenge is free, it’s open to everyone and there are things to do at any time of the year. Get closer to nature all year round by completing fun activities that will help wildlife close to home and further afield, and collect rewards too! Visit rspb.org.uk/wildchallenge

 4.     The Friends of Fletcher Moss meet on a regular basis and organise practical volunteering session in partnership with Manchester City Council to improve the park. The group welcomes new members, if you would like to get involved or to find out more, contact Alan Hill at awhill@globalnet.co.uk

5.     If you’d like to change how you hear from us, it’s easy to do. Just call us on 01524 581026 (Monday to Friday, 9am–5pm), email annabel.rushton@rspb.org.uk or write to Communications Manager, RSPB, 7.3.1 Cameron House, White Cross Estate, South Road, Lancaster, LA14XF.

 The Royal Society for the Protection of Birds (RSPB) is a registered charity in England and Wales 207076, in Scotland SC037654.

Read Full Post »

The Manchester Museum’s huge insect collections are used in many different ways, for instance, for research projects by staff and students of the University of Manchester. The project briefly described below is being carried out now by Lydia Koutrouditsou, a Greek Erasmus student under the supervision of Robert Nudds from FMBH.

Image_01

Lydia Koutrouditsou is selecting a specimen of Swallowtail for taking a photo; the Manchester Museum.

Robert and Lydia take photographs of the museum specimens of swallowtail butterflies (both dorsal and ventral) in order to analyse and calculate their wing shapes using a technique called geometric morphometrics. The researchers are interested in two British butterfly species: Swallowtail, Papilio machaon (incl. the subspecies britannicus), and Scarce Swallowtail, Iphiclides podalirius podalirius. Both species are known to be sexually dimorphic in terms of overall size, with females being the larger. What Robert and Lydia want to investigate is whether the butterflies also differ in the shape of their wings and their tails. If it is found they are different, the study will then go on to look at the aerodynamic consequences of these shape changes.

Image_02

Robert Nudds is taking a photo of a Swallowtail butterfly; the Manchester Museum.

Read Full Post »

Lantern_Bug_scale_0_5cm

Fig. 1: Specimens of the Lanternfly Fulgora laternaria from Mexico in the collection of the Manchester Museum. © The Manchester Museum.

Surely, there are no other living things that rival insects in their vast variety in shape and form. One of the most spectacular group of insects is Lanternflies or Lantern Bugs (family Fulgoridae, order Hemiptera) distributed in the tropics of both the Old and New Worlds (see here for images). The Lanternfly collection at the Manchester Museum is not particularly large, consisting of 150 specimens that belong to 34 identified species (see Allnatt, 2013, for further details).

The following story has been prepared by Kasia Majewski, the Curatorial Assistant within the Manchester Museum Vivarium, whose background is a mix of herpetological (reptile and amphibian) and Entomological work. One of Kasia’s entomological idols, and an inspiration for her passion in ecology, is Maria Sibylla Merian (1647-1717), one of the first naturalists to observe insects directly, make associations between different insect species and host plants, and capture these interactions in stunning colour through her coloured plates. Mrs Merian was not only arguably the first female entomologist, but one of the first naturalists who was also a professionally trained artist, coupling her carefully written observations of species with her mesmerizing illustrations.

Many of her scientific observations are still recognized and valid today, however one story regarding a particular species has always captured people imagination. Fulgoridae, or Lanternflies, are tropical, often colourful flying insects with long protrusions coming from their heads, giving their bodies a uniquely triangular appearance when sitting at rest with their wings closed. In this position, they could be considered lantern shaped, but it is not from this form that they received their name. Across the world where Lanternflies are found, so too are ancient stories of their little bodies lighting up at night from their bright shining protruding “noses”. Maria Sibella Merian was one of the first Europeans to describe this behaviour during her time in Suriname. She wrote that she was presented with a box of live lanternflies, which produced “a fiery light so bright that she could read by it” from their unusually elongated heads (Fig. 2). Given Merian’s penchant for attention to detail, this account is intriguing.

 

Lantern_Bug_01

Fig. 2: A watercolour of a Punica granatum with the life stages of a Cicada (Fidicina mannifera) and a Lanternfly (Fulgora laternaria) from Merian’s Metamorphosis Insectorum Surinamensium (plate 49); online here.

More intriguingly, however, while these stories of light emitting flying lanterns have persisted through generations of native tribes in areas where lanternflies are found, from South America to Southeast Asia,  modern entomologists have never recorded any species of Fulgoridae producing any kind of bioluminescence (or here), and the function of that whimsical elongated “nose” remains a captivating mystery…

You can find more about the Manchester Museum’s Fulgoridae collection in the following paper: Allnatt G. 2013. Recuration of the Fulgoridae collection at the Manchester Museum. Journal of Natural Science Collections, 1: 4-7.

Illustrated records of particular fulgorid species in our collection can be searched online here.

Read Full Post »

Fig_01

A parental pair of burying beetles (Nicrophorus vespilloides) taking care of their larvae; beetles and larvae are sitting on the meat ball prepared by the beetles. © V.A. Timokhanov.

Of the 32 orders of insects 18 contain members that are carrion-feeders. Most of them are beetles and flies. Because carrion is a limited but valuable food resource, and quite unpredictable in distribution, insects, vertebrates and microorganisms compete for it. A clear characteristic of carrion-feeders is the ability to find and secure a suitable carcass quickly and to make efficient use of it.

In the northern hemisphere, the dead bodies of small mammals and birds are used primarily by burying beetles (Nicrophorus species, family Silphidae), which compete effectively with carrion-eating mammals. For instance, at the Biological Station of Michigan University (USA), scientists laid 780 fresh bodies of dead house mice on the ground in a hardwood forest. Within 24 hours 95% of the bodies had been discovered! Of them, 94% had been found by burying beetles and only 6% by scavenging mammals.

Male and female burying beetles form parental pairs concealing and maintaining carrion while also taking care of and raising their offspring (see Figure). A pair of adults buries a carcass of a dead animal, clean it from fur/feathers, destroys eggs/larvae of flesh-eating flies, and prepares a meat ball from it. The ball is protected from rotting by anal secretions from the beetles that kill bacteria. After mating, the female lays 4 to 30 eggs in the soil near the carrion. The young larvae that hatch from these eggs are fed by the parents that ingest flesh from the carrion and regurgitate partially-digested food directly to their mouthparts. The beetles interact with their larvae much as a mother bird interacts with her nestlings: when a parent approaches larvae, they rear up and make ‘begging movements with their legs’ asking for food. As the larvae grow in size, they beg less often and start feeding on their own. After one to two weeks, the larvae pupate in the soil, and a few weeks later new adult beetles emerge. The mother stays with her offspring until they are ready to pupate, while the male leaves a few days earlier.

The story is partly based on the book by G. Waldbauer (2003) ‘What good are bugs?’, Harvard Univ. Press, 366 pp.

 

Read Full Post »

Log_Fig_01_smal

Fig. 1. View of an insect collection area in the Manchester Museum.

Natural history collections include specimens from the subject areas of zoology, botany, entomology, palaeontology and mineralogy (Fig. 1), as well as any documentation associated with them (e.g., card indexes of related museum collections, field notebooks, correspondence files, diaries, etc). Such collections exist not only in museums and herbaria, but also in botanical gardens, arboretums, zoos and aquaria. However, live animal or plant collections are outside the scope of this short essay. It is worth mentioning though that more than 70 known British zoos and aquaria house some 64,000 vertebrate species.

There are more than 200 public and private museums in the UK with natural history collections, 50 of them hold significant foreign material. Recent estimates suggest that the number of natural history specimens in British museums exceeds 100 million. Worldwide, there are more than three billion! Many of the natural history collections in the UK, such as those of the Natural History Museum in London, the Natural History Museum of Oxford University or the Manchester Museum, are of global importance. However, the vast proportion of large museum collections (c. 95%) are kept in storage, behind the scenes, and their full diversity will never be displayed. But does this mean that the majority of collections are not used? Far from it, these collections are stored carefully because of their dual role as a resource for research and for education (see also here).

Collections as biological libraries

The fundamental value of natural history collections is related to our understanding of the Earth’s diversity. Taxonomic museum collections underpin the accumulation of biological knowledge, providing references to discovered natural units (species), and indeed represent an ecological database through the data associated with specimens. Therefore, natural history collections act as ‘biological libraries’, in which a separate specimen can be seen as a prototype of a letter and an individual collection as that of a paragraph or section in the ultimate ‘Book of Knowledge’.

Natural history collections represent an irreplaceable resource for taxonomic and biodiversity research. Such research aims to answer three fundamental questions: (1) what is the organism under study, (2) where is it found in nature, and (3) why is it found there. Without collections most taxonomic research cannot be conducted. Since the rigour of the scientific process is based on repeatability, the specimens used in research are preserved in museums to ensure that they are available for future reference and study.

As centralized repositories of reference material, the collections reduce the need for fieldwork in remote and/or poorly accessible regions, saving both time and money. Furthermore, museums liberate researchers from the time and expenses of maintaining all the specimens necessary for a functional reference collection. Given that unlike library books we cannot copy natural history specimens that were preserved, natural history collections are indeed unique locations for information. With more species becoming rare or extinct, such collections are often the only source of information for such species (Fig. 5), becoming frozen glimpses of a bygone past. For instance, it is known that during the last 600 years, 129 birds (or 1.3% of all known living bird species) have become extinct.

Log_Fig_02_smal

Fig. 2. Two of the type specimens of the Manchester Museum’s collection of tortoise beetles (Cassidinae). The Manchester Museum holds more than 22,000 type specimens, representing 8,000 species names.

The scientific value of a natural history collection is usually measured by the number of type specimens it contains (Fig. 2). A type specimen is a reference specimen selected by a scientist during the description of a new species. Type specimens serve as the primary and unique references for all known species names. They play a key role in stabilizing the use of species names. Museums also hold voucher specimens, which are examples of organisms collected during biodiversity surveys, taxonomic inventories and other research. These specimens are physical proof that species have been recorded from the studied site and identified accurately, and they are always available to be referred to or checked upon when/if necessary.

Log_Fig_03_small

Fig. 3. The scientific value of a natural history specimen depends on the reliability of information written on its label; illustrated is a blister beetle.

Conservation and environmental studies

Conservation programmes, particularly those aimed at mapping priority areas for protection or conservation purposes, require a reliable knowledge of the distribution of species. Yet, for the vast majority of species known to science, most of the available information relating to them exists in the form of taxonomic collections. Sometimes such collections form the only source of data for particular species. Therefore, the most common way distribution information is collected is by examining labels of voucher specimen and databases in museums. These contain essential information about where (locality and habitat/host), when (an exact date) and by whom the specimens were collected (Fig. 3). Every natural history specimen with good data thus provides a physical snapshot of a species at a particular point in time and space. This highlights the need for correct and accurate labelling of museum specimens. A specimen without a label is usually worthless. The practice of utilizing the wide spectrum of information associated with specimens has been referred to as ‘museum ecology’.

Reference collections of voucher specimens and other taxonomic information on invasive species and pests can be used for their accurate identification and for understanding their current distribution and invasion history. In addition, they can be used for assessing the ecological impact of invaders and their potential public health threats. The famous example is the grey squirrel which was introduced to Britain from the USA in the 19th century, and as a result this species has caused native red squirrel populations to die out in most parts of England and Wales.

Natural history collections offer a unique perspective, providing data over a vast time span ranging from millions of years ago (in geological and palaeontological collections) to the present day. Specimens may have been collected over many decades and so record changing environmental conditions and their consequences. For instance, comparative genetic analysis of ancient museum specimens of brown bears with those from isolated populations today provides evidence of reduced levels of genetic diversity in the current populations, which negatively affects the survival potential of this species (Fig. 4).

Log_Fig_04_small

Fig. 4. The brown bear became extinct from Britain by the 10th century, only museum specimens can help us to understand its history here.

In some circumstances museum specimens are the only record of species that are already extinct: e.g., Sloane’s Urania (Urania sloanus), one of the most spectacular day-flying moth species that was endemic to the island of Jamaica (Fig. 5). The moth was last reported in 1894 or 1895, but it possibly survived until at least 1908. Habitat loss, when Jamaica’s lowland rainforests were cleared and converted to agricultural land, may have caused its extinction. Most probably, this species disappeared due to the loss of one of its larval foodplants, as the Urania larvae fed exclusively on rainforest lianas belonging to the genus Omphalea.

Log_Fig_05_small

Fig. 5. The Sloane’s Urania, an extinct species of which only three specimens are deposited in the Manchester Museum.

By examining museum specimens, it is also possible to analyze environmental impacts of climate change or a historical level of pesticide use. This is because historical collections provide baseline data against which modern observations can be compared in order to produce predictive models. For instance, an analysis of preserved bird specimens and their eggs (Fig. 6) can help to monitor the accumulation of toxins, such as mercury or DDT (a famous synthetic pesticide, the use of which is now banned), in the environment resulting from the impact of industrial processes. It has been shown that a marked decrease in eggshell thickness is coincident with the onset of the widespread use of DDT.

Log_Fig_06_small

Fig. 6. The egg collection such as that of the Manchester Museum can help in the estimation of historical levels of toxic contamination in the environment.

Education and cultural value

Natural history museums are places where a visitor can have a unique experience of seeing authentic objects. Therefore, these museums play an important role in education through their exhibits and outreach programmes which use real specimens. Specimens are also used for illustrating natural history books, in which colourful plates are made on the basis of museum specimens (Fig. 7). Natural history specimens, especially beetles and butterflies, are regularly used by designers and artists who draw inspiration from their remarkable variety of forms, colours and patterns. Some natural history specimens or collections have their own historical and/or even high monetary value that makes them important items of the national heritage (Fig. 8). Overall, larger and more comprehensive natural history museum collections form better educational resources.

Log_Fig_07_small

Fig. 7. The recent guide to the freshwater life of Britain contains at least 45 colourful plates of hundreds of insects illustrated from the Manchester Museum’s insect specimens.

Historic natural history collections are directly related to social history through their links to people and places. They are indeed a cultural phenomenon rather than dusty artefacts of professional science. The labels assigned to specimens and the documentation associated with them (e.g., information on the network of collectors, the distribution of collecting across the world, etc.) are commonly used in biographical and historical studies. Hence, natural history collections provide an outstanding and unique resource for a wide variety of client groups.

Log_Fig_08_small

Fig. 8. Apollo butterflies are often restricted in distribution, many of them being threatened and red-listed.

Nowadays, opening cabinet doors and examining museum specimens kept there is not the only way of consulting natural history collections. All large natural history museums make their searchable collection databases and other collection-related information (i.e., images of type specimens) widely available on the Internet, so that collections can be searched and seen online. Such online access to networked data is especially important both for casual and professional users who, for various reason, may be unable to visit a particular museum. Nevertheless, whatever modern advanced technologies can offer us museum natural history specimens have been and always will be the only physical proof and irreplaceable primary documentation of life on Earth. This is what makes museum collections so valuable. Finally, nobody can extract DNA from an online image or test it for pesticide residues, but a physical specimen can provide a wealth of unexpected and inexhaustible information.

Further reading

Diamond J. & Evans E.M. 2007. Museums Teach Evolution – Evolution, 61-6: 1500-1506.

Krishalka, L. & Humphrey P.S. 2000. Can Natural History Museums Capture the Future? – BioScience, 50(7): 611-617. doi: http://dx.doi.org/10.1641/0006-3568(2000)050%5B0611:CNHMCT%5D2.0.CO;2

Mandrioli M. 2008. Insect collections and DNA analyses: how to manage collections? – Museum Management and Curatorship, 23(2): 193-199; doi: 10.1080/09647770802012375

 

Read Full Post »

When museum natural history collections are talked about, it is usually stressed upon how they are important for research (taxonomic, environmental and biodiversity, in particular), education and culture-related enquires (art, design, etc.) – e.g., see here. The following short video could also give you some ideas about the role of museum collections in taxonomic research (created by Jonathan Joseland, an undergraduate student at The University of Manchester, 2018).

However, much less is known about the importance of taxonomic research for collection care and development, particularly for the collections of such diverse groups as plants, molluscs, insects, crustaceans, and other arthropods. There are three main reasons why continuous taxonomic research on natural history collections is essential for their maintenance.

Fig_01

Fig. 1. A store box with undetermined specimens of ladybirds (Coccinellidae), one of some 300 store boxes with over 50,000 undetermined specimens of foreign beetles retained at the Manchester Museum. © The Manchester Museum

1. Naming objects

The first and indefeasible need for each natural history collection is the naming of its objects, which means assigning them to particular species. This can be done by mean of a scholarly taxonomic research only. Before an object has been named, it has no identity and hence no meanings and values can be accrued to it. As A.B. Gahan (1923: 73) put it, “objects without names cannot well be talked about or written about; without descriptions they cannot be identified and such knowledge as may have accumulated regarding them is sealed.” Thus, naming comes first. The Book of Genesis provides the first example of this endeavour, in which, by God’s will, Adam was tasked to name the animals in the Garden of Edem (Fig. 2).

Fig_02

Fig. 2. On the left: Adam naming the animals, the miniature from the medieval bestiary preserved at the St.-Petersburg Public Library, Russia (taken from Muratova, 1984: p. 72). On the right: the portrait of Carl Linnaeus, a Swedish scientists of 18th century who created the modern rules of practical taxonomy and nomenclature (taken from Harnesk, 2007: front cover design).

At present we can hardly rely upon Adam’s help any more. The burden of naming now lies on the shoulders of researchers – taxonomists – who name (= identify or describe as new) species in natural history collections, hence making their further use possible. Although museum life of a natural history specimen can precede its naming (e.g., via the act of acquisition, accession in museum registers, etc.), their ‘individualized life’ starts only after they have been named. Since a language does not contain names for every existing species, new ones are to be introduced when necessary. By conventional taxonomic practices, such names should be written in Latin, forming a kind of common vocabulary of scientific names. Whoever uses such names knows exactly what species they represent and are referred to.

Vernacular and folk names, even if they exist, cannot substitute for scientific names, as they are often misleading. For instance, the name ‘daddy-longlegs’ could be equally attributed to the craneflies (families Tipulidae, Limoniidae, etc.), harvestmen (order Opiliones) or the cellar spiders (family Pholcidae). Thus, indeed, scientific names are unique identifier/designators of the species to which they were attached. In order to gain them, natural history specimens are to be researched by a specialist.

2. Keeping collections updated with modern names

Fig_03

Fig. 3. Example of the recently recurated collection of British micro-Lepidoptera, with all taxonomic names being revised and updated according to the latest published catalogue. © The Manchester Museum

Taxonomy is a dynamic scientific discipline. The status and validity of species names, especially in poorly studied groups, are constantly improved and updated. Therefore, identifications and names used in any natural history collections are to be regularly revisited and revised as well. Such work can be done only by specialists (both professional and amateur experts). This is why collections-based taxonomic research is required to maintain an updated nomenclature and documentation of any natural history collection, keeping it as a first-rate intellectual resource for potential users. Collections themselves can be seen as a giant research tool; the quality of how this tool is operated is crucial. Without taxonomic research, natural history collections are under threat of becoming dusty attics of the academic world, with no obvious reasons for museums to house them. As Lemieux (1981: p. 57) put it, “if collections are the base of the museum, research is its soul”.

3. Increasing the scientific value of collections

Fig_04

Fig. 4. Examples of holotype specimens of recently described cockroach species from Indian, based on the collections acquired by the Manchester Museum in 1950s. © The Manchester Museum

One of the most important criteria by which natural history collections are assessed is a number of type specimens, or types. The act of naming (see above) is conducted and fixed via a description, accounting for the relevant published text(s) and figure(s), in order to arguably introduce a new species name. Any description should have a permanent reference to museum voucher specimen(s) used for it. Such specimens are called name-bearing types (holotypes, paratypes, etc.), also known as rigid designators of scientific names. Original descriptions of new scientific names are always documented by types. A number of the types (especially holotypes) is one of the best indicators of a scientific quality of natural history collections; the more types, the better. For instance, the Manchester Museum’s Entomology Department holds over 12,000 types, representing some 3,000 scientific names of insects, spiders and some other organisms, which makes it one of the most important entomological depositories in the UK.

The naming is always resulted from a taxonomic research. This research acts in its own right, requires highly professional special skills and cannot be replaced with anything else.

Today, one of the challenges many British museums (especially regional and council ones) face is the lack of in-house taxonomic expertise. Collections-based taxonomic research does not emerge as the core strength of contemporary museum policies, with entertainment and education being likely to be seen as priorities. Taxonomy does not carry the same appeal to the popular mind as does the science fiction around dinosaurs. In the UK today, research is widely seen as luxury by museums rather than an essential part of their role (Cross & Wilkinson, 2007). It means that such museums are hardly able to maintain their collections updated and to interpret them. This is very serious issue which will be considered in due details in one of the following blog post.

References and further reading

Appleton, J. 2001. Museum for the People. In: Appleton, J. (ed.), Museum for the People. London: Institute of Ideas, pp. 14-26.

Cross, S. & Wilkinson, H. 2007. Making collections effective. London: Museum Association. 30pp.

Kemp C. 2015. The endangered dead. Nature, 518: 292-294.

Lemieux, L. 1981. Museums of natural history and their social context. Pp. 55-58. In: The World’s Heritage, the museum’s responsibilities. Proceedings of the 12th General Conference and 13th General Assembly of the International Council of Museums. The ICM.

 

Read Full Post »

Older Posts »