Feeds:
Posts
Comments

Archive for the ‘Lepidoptera’ Category

Many of the visitors to the Manchester Museum’s Entomology store are researchers, studying various aspects of insect diversity, taxonomy and even physical properties of their colour. A group of researchers from the New Castle University (UK) is interested in what could be a real colour of butterflies and moths seen as if through the eyes of their predators, birds in particular. Here is a brief report provided by Matthew Wheelwright (Fig. 1), a postgraduate student who is involved in this research project:

Fig_01

Fig. 1. Matthew Wheelwright, a postgraduate student from the New Castle University (on the left) and Phillip Rispin, a curatorial assistant from the Manchester Museum (on the right), are sorting out lepidopteran specimens for scanning.

Colour is vitally important for many aspects of insect lives. It can help them to control their body temperature, or allow them to be recognised by members of their own species. The right body/wing colour can allow insects to blend into their environment in order to hide from predators. Another way in which colour can be used to escape predation is through giving a clear message to their potential predators that they are toxic, not edible or unpleasant tasting and should therefore be avoided. Such insects are usually brightly coloured, with a mixture of yellow/orange and black stripes and spots on their wings. This phenomenon is known as warning coloration (=aposematism). Some other species which occur in the same areas can also benefit from these warning signals by evolving to look like these not edible species; this phenomenon is known as mimicry.

Fig_02

Fig. 2. Butterflies and moths from the collection of the Manchester Museum sorted out for scanning by means of a hyperspectral camera.

The purpose of our study is two-fold. Firstly we want to find out what makes a good pattern of warning coloration and secondly to discover how closely a mimic must resemble a model having warning coloration (=aposematic model) in order to deceive predators into thinking that they are the same species. In order to do this, we need to know how these patterns look to predators (many of which have different visual systems to humans). We therefore take pictures of specimens from various collections from across the globe, including the entomology collection at the Manchester Museum (Fig. 2), using a hyperspectral camera (Fig. 3). This camera allows us to look at the exact colour spectrum of the specimens, including the amount of Ultraviolet (UV) reflected by them. The latter aspect is very important, as many predators, such as birds, can see in UV.

Fig_03

Fig. 3 A hyperspectral camera at work, scanning the Black Witch Moth (Ascalapha odorata) from the collection of the Manchester Museum.

We then used models of predator visual systems to quantitatively compare the colour and pattern of aposematic species to non-aposematic species and the patterns of mimics and models to predict how the predators could perceive them and therefore react to them. In other words, we try to see butterflies and moths through the eyes of insect predators and hope to find out whether insects that look aposematic to us (or their mimics) are seen in the same way by their predators.

Two images of the Orange Sulphur (Colias eurytheme) given below (Fig. 4) show how the butterfly appears to humans (on the left) and to a bird (on the right). Orange Sulphur looks iridescent under the UV, and the false colour image on the left contains the purple representing where the UV is the brightest and seen to birds. The image was kindly created for us by Olivier Penacchio of the University of St. Andrews.

Fig_04

Fig. 4. Two views of Orange Sulphur (Colias eurytheme): left – as seen by a human; right – as could be seen by a bird (contains the purple representing where the UV is the brightest). © Olivier Penacchio

Such research project would be impossible without access to museum specimens from large entomological collections such as that of the Manchester Museum. So we would like to take this opportunity to thank Dr Dmitri Logunov and Phil Rispin for their assistance and generosity with the loan of some specimens.

Advertisements

Read Full Post »

Fig 1The following report has been prepared by Claire Miles, Honorary Curatorial Associate at The Manchester Museum.

Manchester Museum purchased the Adams and Bernard collection of 300 Venezuelan Lepidoptera in April 1976. Since then, if a curious curator removed the lids from the cardboard boxes to peer at the ghostly silhouettes in their translucent paper packets, the lids were always replaced. Now, thanks to funding from the Natural Science Collections Association (NatSCA), part of this collection – around 175 hawkmoths – can be set out, identified, catalogued, and made useful. This blog is a brief summary of progress so far.

Fig 2

Tantalising shapes – the moths in their paper packets.

In the paper packets, the hawkmoths lie with their wings folded together. With wingspans of up to 17 cm, setting the hawkmoths out will take up quite a bit of expensive storage space. Thanks to the NatSCA funding, the necessary glass-topped drawers can be purchased for the Entomology department’s new metal cabinets.

Fig 3

Entomology cabinets at Manchester Museum.

The entomology collections at Manchester Museum contain more than three million specimens including about two and a half million insects (Logunov & Merriman 2012; Logunov 2010). They already hold around 2000 hawkmoths (Sphingidae) representing around 270 species: 700 in the British collection, 850 in the C. H. Schill Worldwide Lepidoptera collection and 370 in the P. Schill Palaearctic Lepidoptera collection.

Fig 4

A drawer of the Death’s-head Hawk-moth, Acherontia atropos, in the British collection.

To put this in perspective, there are about 1500 known hawkmoth species worldwide, and this collection is a drop in the ocean compared to the Natural History Museum’s holdings of 289,000 Sphingidae. Curating and identifying the Adams/Bernard collection serves multiple purposes. It will extend the range of Manchester Museum’s Sphingidae, it will increase the accessible Sphingidae by about 9%, it will hopefully add some species new to the collection (and who knows, possibly completely new species), it will improve access to the collections, and it will improve their storage and security. In addition, I get to hone my practical skills setting the moths, with expert guidance from Phil Rispin, Curatorial Assistant in the Entomology Department.

Fig 5

Some of the hawkmoths have extremely long tongues. They pollinate flowers which provide nectar at the bottom of correspondingly long flower tubes, such as orchids and petunias.

Hawkmoths are fast-flying moths with streamlined bodies, present on almost every continent except Antarctica. They are pollinators as adults, and can be agricultural pests as larvae, which makes them ecologically and economically important, and their relatively well-understood taxonomy and fast response to environmental changes makes them useful environmental indicators (Camargo et al., 2016). This collection gives a snapshot of the species that were present in Venezuela 40 years ago when Mike Adams and George Bernard collected them in May 1975. This was one of a number of expeditions they mounted to Columbia and Venezuela in the 1970s and 80s, searching the high montane cloud-forests of the northern Andes for Pronophiline butterflies (a subtribe of the subfamily Satyrinae), on which they published a number of papers. The hawkmoths were collected in a region 24km north of Altagracia, Miranda State, at altitude 700m; from Guapo Dam, Miranda, and from Rancho Grande, Aragua, at altitude 1090m. The Museum’s Annual Report of 1976 describes the pair only as ‘University Zoology students’ at the time, although it appears they were recent graduates when they started their explorations (Adams, 1984).

Out of their packets, the hawkmoths were found to be in pretty good condition and the colours are remarkably fresh. Six weeks into the project, we have developed a routine – Phil puts the moths to relax in a damp atmosphere at the beginning of the week, and I (generally working one day a week) set them out at the end of the week.

Fig 6

A moth removed from its packet (Adhemarius species).

Fig 7

Moths relaxing in dessicator.

Fig 8

Each moth is set out, pinned down and left to dry for a fortnight (Adhemarius species shown here).

Once set, the collection data label and accession number are added to the pin. 80 moths have been set so far, and at a quick count those represent at least 20 species. The next step will be to identify them. Ultimately, the aim is to collate the information on all the Manchester Sphingidae collections into a single resource, and these stunning moths will be available for research and provide a fantastic resource for the museum’s teaching, displays, public events and engagement activities.

Fig 9

Erinnyis species before adding labels to the moth’s pin.

Fig 10

Eumorpha species.

Fig 11

Work in progress – some of the Adams/Bernard collection.

Fig 12

Claire Miles, Honorary Curatorial Associate at The Manchester Museum, working with the Adams/Bernard Sphingidae collection

References:

Adams MJ. 1984. Andean Butterflies – Search and Research. Alpine Journal. 89: 90­-96.

de Camargo AJA, de Camargo NF, Correa DCV, de Camargo WRF, Vieira EM, Marini-Filho O, Amorim FW. 2016. Diversity patterns and chronobiology of hawkmoths (Lepidoptera, Sphingidae) in the Brazilian Amazon rainforest. Journal of Insect Conservation. 20 (4): 629–641.

Giusti A. 2014. A whopping private collection – yet something still is missing.

http://www.nhm.ac.uk/natureplus/community/research/life_sciences_news/lepidoptera/blog/2014/03/17/a-whopping-private-collection, accessed 27 Feb 2017.

Kitching, I.J. 2017. Sphingidae Taxonomic Inventory, http://sphingidae.myspecies.info/, accessed 27 Feb 2017.

Logunov DV. 2010. The Manchester Museum’s Entomology Collections. Antenna 34 (4): 163–167.

Logunov DV & Merriman N. (eds.). 2012. The Manchester Museum: Window to the World. Third Millenium Ltd., London.

 

Read Full Post »